
RESEARCH
CONTRIBImONS

Cognitive Strategies
and Looping Constructs:
An Empirical Study

At the Cognition and
Programming Project,

Soloway. Ehrlich, and Bonar
are attemptiJ~g to (1)

understand how
programmers--novices and

experts--read and write
programs, and (2) build

software environments based
firmly on this psychological

research that facilitate the
programming process.

Authors' Present Addresses:
Elliot Soloway and Kate
Ehrlich, Department of

Computer Science, Yale
University, P.O. Box 2158,

New Haven, CT 06520;
Jeffrey Bonar, Learning

Research and Development
Center, Univ. of Pittsburgh,

Pittsburgh, PA 15260.
This work was supported by
the Army Research Institute

for the Behavioral and Social
Sciences. under ARI Grant

No. MDA903-80-C-0508.
This work was also

supported by the National
Science Foundation under
NSF Grant SED-81-12403.

Any opinions, findings,
conclusions or

recommendations expressed
in this report are those of the

authors, and do not
necessarily reflect the views

of the U.S. Government.
Permission to copy without

fee all or part of this material
is granted provided that the

copies are not made or
distributed for direct

commercial advantage, the
ACM copyright notice and
the title of the publication

and its date appear, and
notice is given that copying

is by permission of the
Association for Computing

Machinery. To copy
otherwise, or to republish,

requires a fee and/or specific
permission. © 1983 ACM

0001-0782/83/1100-0853 75¢

ELLIOT SOLOWA Y Yale University

JEFFREY BONAR University of Massachusetts

KATE EHRL|CH Yale University

1. INTRODUCTION
The need for the public to be literate in computing is rapidly
being recognized. One aspect of such literacy is programming.
While we do not believe that everyone needs to become a
professional programmer, it is increasingly important to be
able to describe to the computer how it is supposed to realize
one's intentions. The characteristics of the language in which
novice or casual programmers describe their plans are of criti-
cal importance. We might well expect professional program-
mers to adapt to the constraints and implicit strategies facili-
tated by a particular language. However, if the language does
not "cognitively fit" with the non-professionals' problem-
solving skills, then a barrier has been erected to their use of
computers.

Concern for finding a better match between a language and
an individual 's natural skills and abilities is reflected in some
recent empirical research. For example, Ledgard et al. [6]
compared an editing language whose syntax was based on
English with a standard notational editing language, and
found that the English-based language was preferred by the
subjects and led to better performance. Miller [4] examined
the natural problem-solving strategies of nonprogrammers in
order to explore the potential for "natural language" program-
ming. One conclusion he draws that is particularly relevant to
this paper is that programming language constructs could be
developed that were closer to how people "naturally" speci-
fied problem solutions. Claims have also been made (e.g., [7])
that the procedurality in programming taps into novices' pre-
existing cognitive notions. In support of this claim, Soloway et
al. [9] have shown that students write correct equations more
often when solving simple word problems using a procedural
programming language as opposed to using algebra, a non-
procedural language. Similarly, Welty and Stemple [12] com-

ABSTRACT: In this paper, we
describe a study that tests the
following hypothesis: A
programming language construct
that has a closer "cognitive fit" with
an individual's preferred cognitive
strategy wil l be easier to use
effectively. Af ter analyzing Pascal
programs that employed loops, we
identified two distinct looping
strategies: 1) on the ith pass through
the loop, the ith element is both
read and processed (the READ/
PROCESS strategy); and 2). on the ith
pass, the ith e lement is processed
and the next ith element is read
(the PROCESS/I~.~O strategy). We
argue that the latter strategy is
associated with the appropriate use
of the Pascal whi le construct. In
contrast, we feel that a cons~lct
that allows an exit f rom the middle
of the loop (e.g., loop.. , leave...
again) facilitates the former (REa l
PROCESS) strategy. Our results
indicate that subjects
overwhelmingly preferred a READ/
PROCESS strategy over a PROCESS/
~ strategy. When writing a
simple looping program, those
using the loop.. , leave.., again
construct were more often correct
than were those using the standard
Pascal loop constructs.

November 1983 Volume 26 Number 11 Communications of the ACM 853

iiiiiiii

RESEARCH CONl'RIBUllONS

pared the performance of novices using a procedural query
language with those using a non-procedural query language;
they found that subjects performed at a higher level of accu-
racy with the procedural language when writing moderate to
difficult queries.

We report here on an experiment that explores the rela-
tionship between the preferred cognitive strategies of individ-
uals and programming language constructs. By preferred strat-
egy, we mean the strategy that individuals spontaneously use
when solving a problem. We will focus on looping strategies
and examine the impact they have on the use of looping
constructs.

2. TWO STRATEGIES: READ/PROCESS VERSUS
PROCESS/READ

Consider the following problem:

The Averaging Problem
Write a program that repeatedly reads in integers, until it
reads the integer 99999. After seeing 99999, it should
print out the correct average. That is, it should not count
the final 99999.

This problem is certainly neither tricky nor esoteric; one
would expect this problem to be easy for students at the end
of a semester course on Pascal. In fact, we found that students
do surprisingly poorly on this and related problems) In this
problem, the loop is dependent on the variable that holds the
new values as they are successively read in. 2 In this situation,
the loop may not be executed even once, and thus the Pascal
loop construct most appropriate is the while construct [13]. In
Figure 1, we depict the stylistically correct Pascal solution to
this problem.

Stepping back from the code, the strategy that this program
embodies can be characterized as:

Read (first value)
while Test (ith value)

do begin
Process (ith value)
Read (i + Ist value)

end

Since the loop may not be executed if the first value read is
99999, a Read outside the loop is necessary in order to get the
loop started. However, this results in the loop processing being
one step behind the Read; on the ith pass through the loop,
the ith value is processed and then the ith + 1 value is read
in. We call this strategy "process//read next i" (henceforth
referred to a s PROCESS/READ).

We felt this strategy to be unnecessarily awkward and con-
fusing [3, 11]. In effect, processing in the loop would be "out
of sync" with reading in the loop. From a cognitive perspec-
tive, we speculate that such a strategy puts an extra burden
on memory and processing resources. We suggest that a more
natural cognitive strategy would be to read the ith value and
process it on the ith pass through the loop; we call this the

1 In an earl ier s tudy [10], we asked s tudents to wri te a program that solves the
averaging problem stated above. In grading their problems, we overlooked
syntax errors; only 38% were able to produce a correct program. This test was
g iven to s tudents on the last day of classes after a semes te r course on Pascal
programming.
2 Loops can also be dependent on variables playing other roles, e.g., the coun-
ter, the runn ing total. If the counter variable controls the loop, then Pascal 's
for loop is most appropriate; if the running total variable (Sum, in Figure 1)
controls the loop, then the loop can reasonably be expected to be executed at
least once, hence the repeat loop is most appropriate (see [10]).

progr&m Examplel;
v a r Count,, Sum, Number : in teger;

Average : real;
begin

Count := O;
Sum := O;

Read (Number);
wh i le Number <> 99999 do

begin
Sum := Sum + Number;
Count := Count + 1;

Read (Number)

end;
i f Count > 0

then
begin

Average := Sum / Count;
W r i t e l n (Average);

end
else

W r i t e l n (' N o numbers input:
average undef ined') ;

end.

FIGURE 1. A Stylistically Correct Pascal Solution to the Averaging
Problem.

"read//process i" strategy (henceforth referred to as READ/
PROCESS). For example:

loop
do begin

Read (ith value)
Test (ith value)
Process (ith value)

end

This strategy would have the reading and processing "in
sync", and should require less cognitive resources than the
PROCeSS/READ strategy.

Although the PROCESS/READ strategy is facilitated by Pas-
cal's while loop, a READ/PROCESS can be encoded using either
the while or the repeat loop. For example, Figure 2 depicts
three Pascal programs that use while and repeat loops and
implement the READ/PROCESS strategy. 3 These are actual stu-
dent programs generated in an earlier experiment [10]. The
programs in Figures 2a and 2b use an embedded if statement
to effect the READ/PROCESS strategy. In the former case, a
Boolean variable is used to control the outside while loop; in
the latter case the same test is performed twice. In Figure 2c,
we see a program in which a repeat loop is used to imple-
ment the READ/PROCESS strategy; the stop value is simply sub-
tracted from the total. While correct, all three programs need
to employ a considerable amount of additional code in order
to compensate for not employing the appropriate PROCESS/
READ strategy.

3The goto was not taught to s tudents in this class; thus, it does not appear in
the s tudents ' programs.

854 Communications of the ACM November 1983 Volume26 Number 11

RESEARCH CONTRIBUTIONS

program Example2e;
vat N, Sum, X : integer;

Average : real;
Stop : boolean;

begin
Stop := false;
N := O;
Sum : : O;
w h i l e n o t Stop do

begin
Read (X) ;
i f X = 99999

then Stop : : true
else

begin
Sum := Sum + X;
N : = N + i

end
end;

Average :: Sum / N;
Wr i t ,e ln (Average)

end.
2(a)

FIGURE 2. Effecting a READ/PROCESS
Strategy. (a) Using a Boolean Variable and
a Nested Condition to Effect a READ/
PROCESS Strategy. (b) Using a Nested
Conditional and a Repeated Test to Effect
a READ/PROCESS Strategy. (c) Using a
Repeat Loop and Backing Down to Effect
a READ/PROCESS Strategy.

program Example 2b;
var Num, Sum, N : integer;

Avg : real;
begin

Num := O;
N := O;
Sum : : O;
while Num <> 99999 do

begin
Read (Num);
if Num < > 99999 then

begin
Sum := Sum + Num;

N : = N * I
end

end;
Avg : : Sum / N;
Wr it.,e I n (Avg)

end,
2(b)

program Example 2c;
vat Count,, Sum, Num
begin

Count, := -1 ;
Sum := O;
repeat

: integer; Average : real;

Count := Count, + 1;
Read (Num);
Sum := Sum + Num

u n t i l Num = 99999;
Sum := ,Sum - 99999;
Average := Sum / Count,;
W r i t e l n (Average) ;

end.
2(c)

Consider, then, the following looping construct, that is simi-
lar to one in Ada, the new DOD language:

loop;
S;
if B
T;

again

then leave;

where S and T are zero or more statements and B is the test
condition. This construct clearly facilitates a REAn/PROCESS
strategy, since the test can come in the middle of the loop,
between the read and the process. In Figure 3, we depict the
averaging problem, described above, encoded using "Pascal
L," a version of standard Pascal in which the only looping
construct is l o o p . . , l e a v e . . , again. Note that unlike the
programs in Figure 2, no extraneous machinery is required to
encode the READ/PROCF.SS strategy. Note too, however, that
the l o o p . . , l e a v e . . , again construct can also be used to
encode a PROCESS/READ strategy: If S is empty, then the test is
at the top of the loop, thereby creating a standard Pascal
while loop.

3. HYPOTHESES
As stated above, we are interested in the strategies that people
prefer to use to solve problems and the degree to which those
strategies are compatible with the constructs of programming
languages. In particular, we hypothesize: People will find it
easier to program correctly when the language facilitates their
preferred strategy.

Pascal, with the normal while and repeat constructs, can
be used to implement either the READ/PROCESS strategy or the
PROCESS/READ strategy. Moreover, Pascal L (Pascal with only
the l o o p . . , l e a v e . . , again construct) can also be used to en-
code either strategy. However, for problems in which the loop
test is dependent on the values read in, Pascal's while con-
struct facilitates a PROCESS/READ strategy whereas Pascal L
facilitates a REhD/PROCESS strategy. Our claim, then, is that for
the type of problem discussed above, people should find Pas-
cal L easier to program correctly than Pascal.

Our hypothesis leads us to ask three particular questions: 1.
Which strategy do people naturally use? To answer this ques-
tion we need to examine which strategy people adopt when
they think about the problem and commit their thoughts to

November 1983 Volume 26 Number 11 Communications of the ACM 855

RESEARCH CONTRIBUTIONS

p r o g r a m Pascal L;
v a r Count.,, Sum, NewVelue: in teger ;

Average: real ;
begin

Count., := O;
Sum := O;
l oop

Read (NewValue);
if NewValue = 99999 then leave;
Sum := Sum + NewValue;
Count, := Count, + 1;

again
i f Count, > 0

then
begin

Average := Sum / Count,;
Writ, eln (Average);

end
else

Writ,eln ('No numbers input,:
average undef ined ') ;

end.

FIGURE 3. The Averaging Problem Using Pascal L.

paper using a natural language---English--that is neutral with
respect to READ/PROCESS or PROCESS/READ.

Once having determined whether people will adopt a
READ/PROCESS or a PROCESS/READ type of strategy, we can go
on to ask: 2(a). Will people write correct programs more often
when using the language that facilitates their preferred strat-
egy? Thus, if people use a READ/PROCESS strategy in their
initial thinking, we would predict that they should write cor-
rect programs more often when using Pascal L, since this
language facilitates a READ/PROCESS strategy, as compared
with Pascal.

An ancillary question to 2(a) is: 2(b). Irrespective of whether
a strategy is preferred or not, will people write correct pro-
grams more often when using the strategy facilitated by the
language? That is, will people who use a READ/PROCESS strat-
egy in Pascal L write correct programs more often than those
using a PROCESS/READ strategy in Pascal L? Similarly, will
people who use a PROCESS/READ strategy in Pascal write cor-
rect programs more often than those using a READ/PROCess
strategy in Pascal?

A third question of interest concerns the influence of pro-
gramming experience on performance. We expect accuracy to
improve when people have more experience in using a partic-
ular language. It is less clear, however, whether this experi-
ence will change the way people think about a problem. We
need to ask: 3. Do the following vary with experience: accu-
racy of solution, preference for a particular strategy, sensitivity
to the strategy facilitated by a language.

4. EXPERIMENTAL DESIGN
In order to gather empirical data on these questions, we de-
signed the study described below. Students were given a two-
part test, the first part of which is reproduced in Figure 4,
where we asked them to write a plan that would solve the
stated problem. The second part of the test is depicted in
Figures 5 and 6. Half the students were asked to write a

Please write a PLAN which solves the problem described be-
low, and which you would use to guide eventual program devel-
opment. The plan should NOT be in a programming language;
other than that restriction, the choice of "plan language" is up to
you.

PLEASE SHOW ALL YOUR WORK{t{!! DO NOT ERASE!H!H

PROBLEM:
Write a plan for a program which reads in a series of integers,
and which computes the average of these numbers. The pro-
gram should stop reading integers when it has read the number
99999. NOTE: the final 99999 should NOT be reflected in the
average you calculate.

FIGURE 4. All Subjects Were Asked to Produce a Plan.

Standard Pascal provides three looping statements: WHILE,
REPEAT, and FOR. Below is a bnef review of these state-
ments. Please read the review carefully
WHILE expression

DO statements

A WHILE loop repeatedly does the statements while the expres-
sion is true. In other words, expression is tested initially and
after each execution of the statements.

REPEAT
statements

UNTIL expression

A REPEAT loop repeatedly does the statements until the
expression is true. That is, statements are executed initially and
then expression is tested for each repetition of the loop.

FOR identifier :=
expression-alphaTOexpression-

beta
DO statements

A FOR loop does the statements for each value of the identifier
from expression-alpha to expression-beta. First, identifier is set
to the value of expression-alpha and the statements are exe-
cuted. Then, identifier is set to the value of expression-alpha +
1 and the statements are again executed. This continues until
identifier is finally set to the value of expression-beta and the
statements are executed for the last time.

PROBLEM

Wnte a Pascal program which reads in a series of integers, and
which computes the average of these numbers. The program
should stop reading integers when it has read the number
99999. NOTE: the final 99999 should NOT be reflected in the
average you calculate.

REMEMBER, you should use standard Pascal.
(Please use the program outline provided. DO NOT ERASE
ANY WORK. If you want to start fresh, use a new program
outline. Turn in all work.)

PROGRAM PROBLEM (INPUT OUTPUT) ;

VAR
(* BEGIN YOUR STATEMENTS HERE ... *)

FIGURE 5. The Pascal Version of the Study.

856 Communications of the ACM November 1983 Volume 26 Number 11

RESEARCH CONTRIBUTIONS

We have just designed a new language called Pascal L. It is just like standard Pascal except that it does
NOT have the WHILE, REPEAT, and FOR looping statements. Rather, Pascal L has a new kind of
statement: LOOP_LEAVE.AGAIN.

The following describes how this new looping statement works:
LOOP

statements- alpha

IF expression LEAVE

statements -beta

AGAIN

means:
• execute statements-alpha, which could be zero or more legal Pascal statements,
• then, test expression,

if expression is TRUE, skip to the statement AFTER the AGAIN
if expression is FALSE, continue through the loop and execute statements-beta, which could be zero
or more legal Pascal statements, and do the loop all over again.

In other words, as long as the expression stays FALSE, all the statements before LOOP and AGAIN will
continue to be executed.

For example, the following PascaI-L programs print out the numbers 1 through 10 and only use the
LOOP... LEAVE . . . AGAIN loop construction:

PROGRAM example1(output); PROGRAM example2(output); PROGRAM example3(output);

VAR i : INTEGER; VAR i : INTEGER; VAR i := INTEGER;

BEGIN BEGIN BEGIN

i := I; i := I; i := I;

LOOP LOOP LOOP

Writeln(i); IF i > 10 LEAVE; Writeln(i);

IF i >= 10 LEAVE; Writeln(i); i := i + I;

i := i + I i := i + I IF i > 10 LEAVE

AGAIN AGAIN AGAIN

END. END. END.

We would like you to use the LOOP_LEAVE.AGAIN statement in the program you write for the
problem described on the next page. Thank you for your cooperation.

PROBLEM

Write a PascaI-L program which reads in a series of integers, and which computes the average of
these numbers. The program should stop reading integers when it has read the number 99999.
NOTE: the final 99999 should NOT be reflected in the average you calculate.
REMEMBER, you may only use the
LOOP... LEAVE ... AGAIN looping statement.

(Please use the program outline provided. DO NOT ERASE ANY WORK. If you want to start fresh, use a
new program outline. Turn in all work.)

PROGRAM PROBLEM (INPUT, OUTPUT)

VAR

(* BEGIN YOUR STATEMENTS HERE . . . *)

FIGURE 6. The Pascal L Version of the Study.

Pascal program that solved the problem, while the other half
were asked to solve the problem using Pascal L. Each group
was given a one-page discussion of the respective loop con-
structs, i.e., the Pascal L group was given a one-page descrip-
tion of the l o o p . . , l e a v e . . , again construct (Figure 6), while
the Pascal group was given a one-page description of th e for,
repeat, and while constructs (Figure 5). The one page on the
l o o p . . , leave. , . again construct of Pascal L contained three
examples; we were careful to include an instance of using the
i f . . . leave that branched off the top of the loop (that is equiv-
alent to a while), an instance of using the i f . . . leave that
branched at the bottom of the loop {that is equivalent to a
repeat}, as well as an instance that branched in the middle.

As much time as necessary was given to students taking this
test although subjects typically finished in 10--15 minutes,

This test was administered to three different groups: nov-
ices, intermediates, and advanced students. Novices were stu-
dents currently taking a first programming course in Pascal.
The test was administered after the novices had been taught
about and had experience with the while loop and the other
two looping constructs; this occurred three-quarters of the
way through the semester. Intermediates were students cur-
rently two-thirds through a second course in programming
(e.g., either a data structures course using Pascal or an assem-
bly language course). The advanced group were juniors and
seniors in systems programming and programming methodol-
ogy courses.

November 1983 Volume 26 Number 11 Communications of the ACM 857

RESEARCH CONTRIBUTIONS

TABLE I: Strategy on Plans

READ/ PROCESS/
PROCESS ~ READ 1 N Misc. 2

Novices 82% 18% 39 77

Intermediates 91% 9% 90 22

Advanced 67% 33% 48 4

A Chi-square test was used to analyze these data: x 2 = 12.96, p < 0.01
The percentages are based on N, the number of people who had an identifiable strategy, (i.e., they

do not include those in the Misc. category).
2 This column depicts the number of individuals for which we could not identify a strategy in their
plan.

TABLE I1: Strategy on Programs

READ/ PROCESS/ N Misc. 2
PROCESS 1 READ 1

Novices 86% 14% 64 52

Intermediates 72% 28% 89 23

Advanced 60% 40% 49 3

The percentages are based on N, the number of people who had an identifiable strategy (i.e., they
do not include those in the Misc. category).
2 This column depicts the number of individuals for which we could not identify a strategy in their
program.

5. RESULTS

Question 1: Which Strategy Do People Naturally Use?
In Table I, we display the results from the first part of the test
where we asked people to write down their plans for solving
the averaging problem. (Half of the intermediate group were
asked to write a plan and half were asked to write a flow-
chart. We found no reliable difference between the two
groups in their choice of strategies. Thus, for reporting pur-
poses, we have combined the results of these two groups.)
These results clearly indicate that all three populations had a
strong preference for the READ/PROCESS strategy when it was
possible for us to discern any strategy at all. Across all three
groups, of those students who had a discernible strategy, 80%
used the READ/PROCESS strategy, while only 20% used the
PROC~.SS/REAU strategy in their plans. 4

Now consider Table 11, where we show the strategy choice
on the program, irrespective of language (see Table V). Except
for the advanced group, we again see a strong preference for
the READ/PROCESS strategy. That is, over all three groups, of
the subjects who had a clearly discernible strategy, 73% of
them used the READ/PROCmS strategy while only 27% used
the PROCESS/READ strategy. These data support the claim that
given the two alternatives, the preferred strategy is READ/
PROCESS rather than PROCESS/READ.

It is also illuminating to look at the students who used the
same strategy on both plan and program, and those who did
not, i.e., those that changed strategies. Of the 1585 students

4 The category of "Miscellaneous" was made up of thoseplans in which we
could not discern a clear READ/PROCESS or PROCESS/READ strategy. Of the
77 novices and 22 intermediates with miscellaneous plans. 40 novices and 11
intermediates had plans that were too sketchy for categorization: 18 novices
and 5 intermediates wrote nonprocedural plans--typically they simply restated
the problem: 17 novices and 3 intermediates solvedthe wrong problem, and 2
novices and 3 intermediates wrote no plan. Clearly, the large number in this
category is interesting in its own right: however, we feel that explanations for
these data can reasonably be decoupled from the specific issues raised in this
paper.
~ There were fewer plans (177) than programs (202) in which we could clearly
detect a strategy. However. of the former group, there were 19 students who
did not have a discernible strategy on their program: hence, there were only
158 students who had discernible strategies on both plan and program.

who had a discernible strategy for both plan and program,
78% (123) used the same strategy on both plan and program,
while only 22% (35) switched strategies. Of the ones who did
not switch, 82% (101) used a READ/PROCESS strategy on both
plan and program. Again, this supports our claim that READ/
PROCESS is the]3referred strategy.

Interestingly, some students appeared to be sensitive to the
strategy facilitated by the programming language: in Table Ill
we show a breakdown by language type for those subjects
who did (and did not) switch strategies between the plan and
the program. These data indicate that subjects in the Pascal
group switched more often than did subjects in the Pascal L
group. This is as expected: by comparison, there were many
m o r e READ/PROCESS plans than there w e r e PROCESS/READ

plans; thus, Pascal L subjects could stay with a RE~U/PROCrSS
strategy, while Pascal subjects who were sensitive to the fact
that the appropriate strategy for the problem was PROCESS/
READ needed to switch strategies.

Question 2a: Will People Write Correct Programs More
Often When Using The Language That Facilitates Their Pre-
ferred Strategy?
While it seems clear that people prefer a READ/PROCmS strat-
egy, the key question is whether or not this preference can
lead to program correctness. From the data shown in Table
IV, it can be seen that more people wrote a correct program
using Pascal L, the language that facilitates a READ/PROCmS
strategy, than did those using Pascal. The incorrect programs
exhibited a number of standard bugs, in particular the "off-by-
1" bug. Students would typically employ a READ/PROCESS

TABLE II1: People Who Did and Did Not Switch Strategies

People Switchin 9 People NOT Switching Statistical
Strategies f r o m Strategies from Significance 1
Plan to Program Plan to Program

PascalGroup 23 50 x ~ = 6.89
PascalLGroup 12 73 p < 0 . 0 1

35 123

1 A Chi-square test was used in this comparison.

TABLE IV: Program Correctness with Respect to Language

Statistical 2 Correct ~ Incorrect ~ N Significance

Novices
Pascal/_ Group
Pascal Group

Intermediates
Pascal L Group
Pascal Group

Advanced
Pascal L Group
Pascal Group

24% (14) 76% (44) 58 Not Significant
14% (8) 86%(50) 58

61% (36) 39% (23) 59 (x 2 = 7.08)
36% (19) 64% (34) 53 p = 0.01

96% (25) 4% (1) 26 (x 2 = 6.58)
69% (18) 31% (8) 26 p < 0.02

Novices + Intermediates + Advanced
Pascal L Group 52% (75) 48% (68) 143 (x 2 = 10.98)
Pascal Group 33% (45) 67% (92) 137 p < 0.001

1 The numbers in parentheses represent actual numbers, not percentages.
2 A Chi-square test was used in this comparison.

858 Communications of the ACM November 1983 Volume 26 Number 11

RESEARCH CONTRIBUTIONS

TABLE V: Program Correctness with Respect to Language and Strategy

Statistical 2 Strategy on Program s CorrecP IncorrecP N Significance

Novices
PascalL Group

Pascal Group

Intermediates
PascalL Group

PascalGroup

Advanced
Pascal L Group

Pascal Group

" READ/PROCESS 48% (14) 52% (15) 29
PROCESS/READ 0% (0) 100% (1) 1 See note 4
Misc. 28

READ/PROCESS 0% (0) 100% (26) 26
• PROCESS/READ 100% (8) 0% (0) 8 See note 4
Misc. 24

* READ/PROCESS 79% (34) 21% (9) 43 (x 2 = 7.62)
PROCESS/READ 29% (2) 71% (5) 7 p < 0.01
Misc. 9

READ/PROCESS 14% (3) 86% (18) 21 (x 2 = 21.6)
* PROCESS/READ 89% (16) 11% (2) 18 p < 0.001
Misc. 14

* READ/PROCESS 96% (23) 4% (1) 24
PROCESS/READ 100% (2) 0% (0) 2
Misc. 0

See note 4

READ/PROCESS 40% (2) 60% (3) 5 (x 2 = 5.50)
* PROCESS/READ 89% (16) 11% (2) 18 p < 0.02
Misc. 3

1 The numbers in parentheses represent actual numbers, not percentages.
2 A Chi-square test was used in this comparison. Note that the Misc. category was not used in the Chi-square calculation.
3 Asterisks indicate the strategy that was appropriate for the language.
4 Although the numbers are in the predicted direction, there are too few individuals in some of the cells to permit a Chi-square analysis.

strategy and thus include the final 99999 both in the sum and
in the count of numbers. Almost none of the students, intro-
ductory or advanced, tested to see if the count was zero. For
the purposes of our experiment, we did not count such pro-
grams as incorrect, if that were the only bug. Also, we did not
count as incorrect programs that were only syntactically in-
correct (e.g., missing semicolons).

Except for the novice group, all other groups showed signif-
icant improvement with respect to correctness when using
Pascal L as compared to standard Pascal. (Although the nov-
ices show the same direction of effect as the other groups, the
difference in their performance is not significant due to the
large number of incorrect programs.) Given that students
were exposed to the l o o p . . , l e a v e . . , again construct of Pas-
cal L for only a few minutes, and given that they had much
more familiarity and experience with Pascal's standard loop
constructs, we were quite impressed with the high perform-
ance of the Pascal L users. Thus, these data support the claim
that people will write correct programs more often if they use
the language that facilitates their preferred strategy.

Question 2b: Irrespective Of Whether A Strategy Is Preferred
Or Not, Will People Write Correct Programs More Often
When Using The Strategy Facilitated By The Language?
In order to answer Question 2a we needed to compare per-
formance across languages (Pascal versus Pascal L). However,
in order to answer Question 2b, we need to look at correct-
ness within a language as a function of strategy (Table V).
First consider the intermediate group's performance; there we
see quite clearly that those in the Pascal L group who used a
READ/PROCESS strategy on their program were able to write a
correct program more often than those who used a PROCESS/

READ strategy. Similarly, those in the Pascal group who used a
PROCESS/READ strategy on their program were able to write a
correct program more often than those who used a READ/
PROCESS strategy. Thus, it seems that a sensitivity to the strat-
egy facilitated by the language constructs can have a signifi-
cant effect on performance.

Question 3: Does Preference For A Strategy Vary With Expe-
rience? Does Program Accuracy Vary With Experience?
As expected, accuracy improves from 19% for the novice
group to 49% for the intermediate group to 83% for the ad-
vanced group (x 2 = 61.3, p < 0.001). We also examined
whether the difference in performance between Pascal and
Pascal L was affected by the level of experience of the group
(see Table IV). The significance of level of experience and
language type was only marginal, 6 suggesting that all levels of
experience benefited equally from Pascal L.

We can also see a shift in strategy preference: the trend in
the data in Table I suggests that the more experienced pro-
grammers were beginning to more consistently adopt a PROC-
ESS/READ strategy. Finally, sensitivity to the strategy that im-
plicitly underlies a language construct also seems to increase
with experience. This trend can be seen by asking the follow-
ing question of the data in Table V: what percentage of pro-
grammers used the strategy appropriate to the language (irre-
spective of language type and irrespective of program correct-
ness)? The answers are that 58% (37/64) of the novices, 68%
(61/89) of the intermediates, and 80% (42/49) of the advanced
programmers employed the strategy appropriate to the lan-

6 N o v i c e vs. expe r t : z = 1.62, p = .10; i n t e r m e d i a t e vs. (expe r t + novice) z = .91.
not s ign i f i can t . T h e i n t e r a c t i o n w a s a n a l y s e d u s i n g an a r c s in t r a n s f o r m a t i o n
(see [1] p. 368).

November 1983 Volume 26 Number 11 Communications of the ACM 859

RESEARCH CONTNBImONS

guage, e.g., a PROCESS/READ strategy for Pascal, and READ/
PROCESS strategy for Pascal L (x 2 = 10.20, p < 0.01).

In summary, the data gathered in this study support the
following claims:

• people's preferred cognitive strategy seems to be READ/
PROCESS as opposed to PROCESS/READ, at least on problems
of the sort used in this study.

• people can write correct programs more often using a
language that facilitates their preferred cognitive strategy;
and

• people's accuracy, sensitivity to underlying strategy, and
preference for a particular strategy can shift with experi-
ence.

6. CONCLUDING REMARKS AND IMPLICATIONS
In this study, we have documented some of the difficulties
that arise when a programming language construct requires a
cognitive strategy that differs from the preferred strategy. In
particular, we have focused on Pascal's while construct, and
have shown that the strategy that underlies the correct use of
that const ruct - - a PROCESS/READ strategy--is clearly not the
preferred strategy. Moreover, we have demonstrated the sig-
nificant increase in performance that results when subjects
are given a construct, e.g., the l o o p . . , l e a v e . . , again con-
struct, that facilitates the READ/PROCESS strategy, their pre-
ferred cognitive strategy. Clearly, care must be taken in gener-
alizing our results: the task used in our study required only a
small program and the subjects were not professional pro-
grommets. However, at a min imum, programming instruction
needs to attend to the bugs and misconceptions that arise in
this sort of situation. For example, students need to be made
aware of the existence of the different strategies. Also, stu-
dents need to be taught explicitly about the characteristics of
problems that require the unusual strategy. In this way, stu-
dents might be made more conscious of the potential pitfalls.
It would be an interesting experiment to see if. with such
explicit instruction, the number of bugs and misconceptions
could be reduced.

Another observation can also be drawn from our study:
students write programs correctly more often using a con-
struct that permits them to exit from the middle of the loop.
Strong claims have been made against this sort of construct as
it is argued that one should exit a loop from the top or the
bottom, not the middle. For example, Ledgard [5], argues that
"forcing loop exits to the beginning or end of a loop in the long
run is superior. In particular, it forces the programmer to state
the loop-terminating condition at the entrance to or exit from
the loop. While this may be more difficult to write initially, in
the long run it forces a good program structure and leads to
more maintainable programs. Exiting from the middle of a
loop, while convenient, m a y readily lead to confusing program
logic." It is further claimed that the readability of a program is
hampered if exits from the middle of the loop are allowed.
(See also [2, 13].) Our study did not examine the readability
claim, since we looked only at program generation. However,
a series of studies by Sheppard et el. [8] suggest that in fact a
construct that permits an exit in the middle does not interfere
with readability. They compared a "strictly structured" loop-
ing construct [2], that did not permit an exit from the middle
with a "naturally structured" construct, that did permit an
exit from the middle, and found that their programmers
showed no reliable difference in performance between these
two constructs on a program comprehension task. They also

examined these constructs in modification and debugging
tasks and again found no statistical difference between the
programmers' performance. Moreover, their studies were with
professional programmers. Thus, there appears to be empirical
evidence that an exit from the middle of the loop is not as
harmful as was conjectured.

Finally, our study suggests that insights can come from
looking beyond the syntax and semantics of language con-
structs to the cognitive demands that those constructs place
on programmers. This appears to be especially relevant to the
training of non-professional programmers since programming
is a demanding skill and unnecessary hurdles serve only to
complicate the learning process further. By being sensitive to
the problem-solving skills that people bring to programming,
and to those required by programming, we might be better
able to assist people in making the necessary transitions.

Acknowledgments . The authors would like to thank the
reviewers of this paper for their constructive comments. We
would also like to thank Lewis Johnson, Steve Draper, Jerry
Leichter, Jim Galambos, and John Black for their helpful com-
ments on earlier drafts of this paper.

REFERENCES
1. Bishop, Y.M.N., Feinberg, S.E., and Holland, P.W. Discrete Multivar-

iate Analysis: Theory and Practice. MIT Press, Cambridge. Massachu-
setts, 1975.

2. Dijkstra, E.W. Notes on structured programming. In Structured Pro-
gramming, O.I. Dahl, E.W. Dijkstra, C.A.R. Hoare, (eds.), Academic
Press, New York, 1972.

3. Knuth, D. Structured programming with GOTO statements. Comput.
Surv. 6, 4 (December 1974), 261-301.

4. Miller, L.A. Natural language programming: styles, strategies, and
contrasts. IBM Syst.]. 20, 2 (1981), 184-215.

5. Ledgard, H.F. and Marcotty, M. A genealogy of control structures.
Commun. ACM 18 11 (1975), 629-638.

6. Ledgard, H., Whiteside, J., Singer, A., and Seymour, W. The natural
language of interactive systems. Commun. ACM 23, 10 (1980), 556-
563.

7. Papert, S. Mindstorms, Children, Computers and Powerful Ideas. Basic
Books, Inc., New York, 1980.

8. Sheppard. S.B., Curtis. B., Milliman, P.. and Love. T. Modern coding
practices and programmer performance. Computer (December 1979),
41-49.

9. Soloway, E., Lochhead, J., and Clement, [. Does computer program-
ming enhance problem solving ability? Some positive evidence on
algebra word problems. In Computer Literacy, R. Seidel, R. Anderson,
B. Hunter (eds.), Academic Press. New York, 1982, pp. 171-215.

10. Soloway, E., Ehrlich, K., Boner, J., and Greenspan, J. What do novices
know about programming? In Directions in Human-Computer Interac-
tions, B. Shneiderman and A. Badre (eds.), Ablex, Inc., 1983.

11. Wegner, P. Programming languages--Concepts and research direc-
tions. In Research Directions in Software Technology, MIT Press, Cam-
bridge. Massachusetts, 1979.

12. Welty, C. and Stemple, D. Human factors comparison of a procedural
and a nonprocedural query langauge. ACM Trans. Database Syst. 6, 4
(1981), 626-649.

13. Wirth, N. On the composition of well-structured programs. ACM
Comput. Surv. 6, 4 (1974).

CR Categories and Subject Descriptors: D.m[Software]: Miscella-
neous-software psychology; D.3.3]Programming Languages]: Language
Constructs--control structures; K.3.2]Computers and Education]: Com-
puter and Information Science Education--computer science education

General Terms: Human Factors
Additional Key Words and Phrases: cognitive factors in programming,

cognitive strategies, looping constructs.

Received 7/81; revised 7/82; accepted 9/82

860 Communications of the ACM November 1983 Volume 26 Number 11

